Gcm1 expression defines three stages of chorio-allantoic interaction during placental development
نویسندگان
چکیده
The formation of the labyrinth layer is a critical step of placental development. The transcription factor glial cells missing 1 (Gcm1) plays a pivotal role in labyrinth development, but the sequence of events controlling its expression has not been identified yet. Our studies presented herein show that Gcm1 expression occurs in three distinct phases during placental development, each specific to a particular stage of chorio-allantois interaction. In the first, the pre-fusion phase, Gcm1 mRNA is expressed in isolated clusters of chorionic cells, but not efficiently translated. Upon allantois-chorion fusion, the second phase, Gcm1 expression is greatly induced in clusters of chorionic cells separated by non-expressing cells and the Gcm1 mRNA is translated to protein. In the third phase, the labyrinth formation, cells expressing Gcm1 proliferate, involute in the chorionic plate and branched villi formation begins.
منابع مشابه
Investigation into a role for the primitive streak in development of the murine allantois.
Despite its importance as the source of one of three major vascular systems in the mammalian conceptus, little is known about the murine allantois, which will become the umbilical cord of the chorio-allantoic placenta. During gastrulation, the allantois grows into the exocoelomic cavity as a mesodermal extension of the posterior primitive streak. On the basis of morphology, gene expression and/...
متن کاملTargeted disruption of the synovial sarcoma-associated SS18 gene causes early embryonic lethality and affects PPARBP expression.
The synovial sarcoma-associated protein SS18 (also known as SYT or SSXT) is thought to act as a transcriptional co-activator. This activity appears to be mediated through the SWI/SNF proteins BRG1 and INI1 and the histone acetyl transferase p300. Here, we report that disruption of the mouse Ss18 gene results in a recessive embryonic lethal phenotype, due to placental failure caused by impairmen...
متن کاملDual-specificity phosphatase 23 mediates GCM1 dephosphorylation and activation
Glial cells missing homolog 1 (GCM1) is a transcription factor essential for placental development. GCM1 promotes syncytiotrophoblast formation and placental vasculogenesis by activating fusogenic and proangiogenic gene expression in placenta. GCM1 activity is regulated by multiple post-translational modifications. The cAMP/PKA-signaling pathway promotes CBP-mediated GCM1 acetylation and stabil...
متن کاملRACK1 (receptor for activated C-kinase 1) interacts with FBW2 (F-box and WD-repeat domain-containing 2) to up-regulate GCM1 (glial cell missing 1) stability and placental cell migration and invasion.
GCM1 (glial cell missing 1) is a short-lived transcription factor essential for placental development. The F-box protein, FBW2 (F-box and WD-repeat domain-containing 2), which contains five WD (tryptophan-aspartate) repeats, recognizes GCM1 and mediates its ubiquitination via the SCFFBW2 E3 ligase complex. Although the interaction between GCM1 and FBW2 is facilitated by GCM1 phosphorylation, it...
متن کاملp45NF-E2 represses Gcm1 in trophoblast cells to regulate syncytium formation, placental vascularization and embryonic growth.
Absence of the leucine zipper transcription factor p45NF-E2 results in thrombocytopenia, impaired placental vascularization and intrauterine growth restriction (IUGR) in mice. The mechanism underlying the p45NF-E2-dependent placental defect and IUGR remains unknown. Here, we show that the placental defect and IUGR of p45NF-E2 (Nfe2) null mouse embryos is unrelated to thrombocytopenia, establish...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 115 شماره
صفحات -
تاریخ انتشار 2002